

Les Jurys de la Communauté française de l'enseignement secondaire ordinaire

Consignes d'examen

Cycle	2018-2019/1				
Titre	CESS G / TTR				
Matière	Mathématique				

Direction des Jurys de l'enseignement secondaire Rue Adolphe Lavallée, 1 1080 Bruxelles

enseignement.be/jurys jurys@cfwb.be

I. Informations générales

•••Identification de la matière

Nom de la matière dans le décret : Mathématique

Volume horaire: 4h

Ces consignes annulent toutes les précédentes.

••• Programme

Le numéro du programme : 469/2015/240 Nom du programme : mathématiques générales

Lien: http://www.wallonie-bruxelles-enseignement.be/progr/469-2015-240.pdf

Rappel : ces consignes ne se substituent pas au programme de la fédération Wallonie Bruxelles. Ce document complète le programme et précise notamment les modalités d'évaluation.

II. Organisation de l'examen

Modalité d'évaluation d'examen

Pour le premier cycle 2018-2019, un seul examen sera organisé pour l'ensemble de la matière.

Un examen écrit.

Nombre d'heures: 3 heures 30 minutes maximum

••• Matériel

Matériel requis : calculatrice non graphique et non programmable, latte, équerre, rapporteur, compas.

Matériel autorisé : matériel scolaire de base.

Matériel refusé : calculatrice graphique, calculatrice programmable

Le formulaire ci-après (3 pages) sera joint au questionnaire. Les formules qui s'y trouvent ne doivent pas être mémorisées.

III. Évaluation et sanction des études

Dispense

Pour les candidats ajournés : dispense obtenue si la note est supérieure ou égale à 50%.

<u>Enseignement secondaire du 3^{ème} degré : humanités générales et technologiques</u>

Formulaire de mathématiques.

5GUAA1 : Formules relatives à la méthode des moindres carrés.

On considère un nuage constitué de n points (x_1, y_1) , (x_2, y_2) , ..., (x_n, y_n) dont le point moyen est (\bar{x}, \bar{y}) .

Covariance:
$$cov(x, y) = \frac{1}{n} \cdot \sum_{i=1}^{n} (x_i - \overline{x}) \cdot (y_i - \overline{y})$$

On peut utiliser aussi :
$$cov(x, y) = \frac{1}{n} \cdot \sum_{i=1}^{n} x_i \cdot y_i - \overline{x} \cdot \overline{y}$$

Coefficient de corrélation :
$$r = \frac{\text{cov}(x, y)}{\sigma(x) \cdot \sigma(y)}$$

Rappel:
$$\sigma(x) = \sqrt{\frac{\sum\limits_{i=1}^{n}(x_i - \overline{x})^2}{n}} = \sqrt{\frac{\sum\limits_{i=1}^{n}x_i^2}{n} - \overline{x}^2}$$
 et de même $\sigma(y)$ sont les écarts-types respectifs des valeurs de x et de y .

Equation de la droite de régression de y par rapport à x : $d \equiv y - \overline{y} = a \cdot (x - \overline{x})$

avec
$$a = \frac{\text{cov}(x, y)}{(\sigma(x))^2}$$

5GUAA2 : Formules relatives à l'algèbre financière.

 $C_{\scriptscriptstyle 0}$: capital initial $C_{\scriptscriptstyle t}$: capital obtenu après t périodes

i: taux d'intérêt par période t: nombre de périodes

Intérêts simples : $C_t = C_0 \cdot (1 + i \cdot t)$

 $\underline{\text{Intérêts composés}}: \quad C_{t} = C_{0} \cdot (1+i)^{t}$

Taux équivalents: $1 + i_{annuel} = (1 + i_{semestriel})^2 = (1 + i_{trimestrik})^4 = (1 + i_{mensuel})^{12}$

 $\underline{\text{Constitution d'un capital}}: \qquad V_n = a \cdot \frac{\left(1+i\right)^n - 1}{i}$

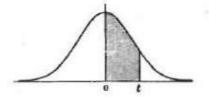
 ${\cal V}_{\scriptscriptstyle n}\,$: valeur acquise lors du dernier versement

 $a\,$: montant de chaque versement

 $n\,$: nombre de versements périodiques

 $\underline{ \text{Annuit\'es de remboursement}}: \ annuit\'e = \frac{capital \ pr\^et\'e \cdot i}{1 - \left(1 + i\right)^{-n}}$

 $\underline{\text{Mensualit\'es de remboursement}}: \quad \textit{mensualit\'e} = \frac{\textit{capital pr\^et\'e} \cdot \left(\left(1 + \textit{TAEG} \right)^{\frac{1}{12}} - 1 \right)}{1 - \left(1 + \textit{TAEG} \right)^{\frac{-n}{12}}}$


TAEG: taux annuel effectif global

6GUAA2 : Loi de probabilités – table de la loi normale.

AIRES DE LA COURBE NORMALE CENTREE REDUITE

Cette table donne les aires situées en dessous de la courbe de la distribution normale centrée réduite ϕ entre 0 et $t \ge 0$, avec un pas de 0,01.

t	0	1	2	3	4	5	6	7	8	9
0,0	0,0000	0,0040	0,0080	0,0120	0,0160	0,0199	0,0239	0,0279	0,0319	0,0359
0,1	0,0398	0,0438	0,0478	0,0517	0,0557	0,0596	0,0636	0,0675	0,0714	0,0754
0,2	0,0793	0,0832	0,0871	0,0910	0,0948	0,0987	0,1026	0,1064	0,1103	0,1141
0,3	0,1179	0,1217	0,1255	0,1293	0,1331	0,1368	0,1406	0,1443	0,1480	0,1517
0,4	0,1554	0,1591	0,1628	0,1664	0,1700	0,1736	0,1772	0,1808	0,1844	0,1879
0,5	0,1915	0,1950	0,1985	0,2019	0,2054	0,2088	0,2123	0,2157	0,2190	0,2224
0,6	0,2258	0,2291	0,2324	0,2357	0,2389	0,2422	0,2454	0,2486	0,2518	0,2549
0,7	0,2580	0,2612	0,2642	0,2673	0,2704	0,2734	0,2764	0,2794	0,2823	0,2852
0,8	0,2881	0,2910	0,2939	0,2967	0,2996	0,3023	0,3051	0,3078	0,3106	0,3133
0,9	0,3159	0,3186	0,3212	0,3238	0,3264	0,3289	0,3315	0,3340	0,3365	0,3389
1,0	0,3413	0,3438	0,3461	0,3485	0,3508	0,3531	0,3554	0,3577	0,3599	0,3621
1,1	0,3643	0,3665	0,3686	0,3708	0,3729	0,3749	0,3770	0,3790	0,3810	0,3830
1,2	0,3849	0,3869	0,3888	0,3907	0,3925	0,3944	0,3962	0,3980	0,3997	0,4015
1,3	0,4032	0,4049	0,4066	0,4082	0,4099	0,4115	0,4131	0,4147	0,4162	0,4177
1,4	0,4192	0,4207	0,4222	0,4236	0,4251	0,4265	0,4279	0,4292	0,4306	0,4319
1,5	0,4332	0,4345	0,4357	0,4370	0,4382	0,4394	0,4406	0,4418	0,4429	0,4441
1,6	0,4452	0,4463	0,4474	0,4484	0,4495	0,4505	0,4515	0,4525	0,4535	0,4545
1,7	0,4554	0,4564	0,4573	0,4582	0,4591	0,4599	0,4608	0,4616	0,4625	0,4633
1,8	0,4641	0,4649	0,4656	0,4664	0,4671	0,4678	0,4686	0,4693	0,4699	0,4706
1,9	0,4713	0,4719	0,4726	0,4732	0,4738	0,4744	0,4750	0,4756	0,4761	0,4767
2,0	0,4772	0,4778	0,4783	0,4788	0,4793	0,4798	0,4803	0,4808	0,4812	0,4817
2,1	0,4821	0,4826	0,4830	0,4834	0,4838	0,4842	0,4846	0,4850	0,4854	0,4857
2,2	0,4861	0,4864	0,4868	0,4871	0,4875	0,4878	0,4881	0,4884	0,4887	0,4890
2,3	0,4893	0,4896	0,4898	0,4901	0,4904	0,4906	0,4909	0,4911	0,4913	0,4916
2,4	0,4918	0,4920	0,4922	0,4925	0,4927	0,4929	0,4931	0,4932	0,4934	0,4936
2,5	0,4938	0,4940	0,4941	0,4943	0,4945	0,4946	0,4948	0,4949	0,4951	0,4952
2,6	0,4953	0,4955	0,4956	0,4957	0,4959	0,4960	0,4961	0,4962	0,4963	0,4964
2,7	0,4965	0,4966	0,4967	0,4968	0,4969	0,4970	0,4971	0,4972	0,4973	0,4974
2,8	0,4974	0,4975	0,4976	0,4977	0,4977	0,4978	0,4979	0,4979	0,4980	0,4981
2,9	0,4981	0,4982	0,4982	0,4983	0,4984	0,4984	0,4985	0,4985	0,4986	0,4986
3,0	0,4987	0,4987	0,4987	0,4988	0,4988	0,4989	0,4989	0,4989	0,4990	0,4990
3,1	0,4990	0,4991	0,4991	0,4991	0,4992	0,4992	0,4992	0,4992	0,4993	0,4993
3,2	0,4993	0,4993	0,4994	0,4994	0,4994	0,4994	0,4994	0,4995	0,4995	0,4995
3,3	0,4995	0,4995	0,4995	0,4996	0,4996	0,4996	0,4996	0,4996	0,4996	0,4997
3,4	0,4997	0,4997	0,4997	0,4997	0,4997	0,4997	0,4997	0,4997	0,4997	0,4998
3,5	0,4998	0,4998	0,4998	0,4998	0,4998	0,4998	0,4998	0,4998	0,4998	0,4998
3,6	0,4998	0,4998	0,4999	0,4999	0,4999	0,4999	0,4999	0,4999	0,4999	0,4999
3,7	0,4999	0,4999	0,4999	0,4999	0,4999	0,4999	0,4999	0,4999	0,4999	0,4999
3,8	0,4999	0,4999	0,4999	0,4999	0,4999	0,4999	0,4999	0,4999	0,4999	0,4999
3,9	0,5000	0,5000	0,5000	0,5000	0,5000	0,5000	0,5000	0,5000	0,5000	0,5000